On a Certain Class of Quasilinear Second-Order Differential-Algebraic Equations
نویسندگان
چکیده
We consider systems of second-order, quasilinear, ordinary differential equations with an identically degenerate matrix coefficient the principal term and well-posed initial conditions. Fundamental differences between such problems solved respect to second derivative are indicated. In terms polynomials, we formulate conditions existence uniqueness solutions in a neighborhood starting point.
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملOn Singular Points of Quasilinear Differential and Differential-algebraic Equations
We show how certain singularities of quasilinear diierential and diierential-algberaic equations can be resolved by taking the solutions to be integral manifolds of certain distributions rather than curves with speciic parametrization.
متن کاملKamenev-type Oscillation Criteria for Second-order Quasilinear Differential Equations
We obtain Kamenev-type oscillation criteria for the second-order quasilinear differential equation (r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|β−1y(t) = 0 . The criteria obtained extend the integral averaging technique and include earlier results due to Kamenev, Philos and Wong.
متن کاملA Semi-Analytical Method for Solutions of a Certain Class of Second Order Ordinary Differential Equations
This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the method, four examples are considered. The results indicate that the DTM is reliable and accurate when compared t...
متن کاملReduction methods for quasilinear differential-algebraic equations
Geometric reduction methods for differential-algebraic equations (DAEs) aim at an iterative reduction of the problem to an explicit ODE on a lower-dimensional submanifold of the so-called semistate space. This approach usually relies on certain algebraic (typically constant-rank) conditions holding at every reduction step. When these conditions are met the DAE is called regular. We discuss in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2022
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-022-06176-1